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Why Transfer learning?

> Data hungry

> Training is very expensive
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Why Transfer learning?

> BERT, developed by Google, has been trained on 16 Cloud TPUs (64 TPU
chips total) for 4 days.

::22 Google Al L J

+°e® @GoogleAl

We have released (@ TensorFlow code+models for BERT, a
brand new pre-training technique which is now state-of-
the-art on a wide array of natural language tasks. It can
also be used on many new tasks with minimal changes
and quick training!

Al GPT
i Open Sourcing BERT: State-of-the-Art Pre-training for...
— ' r""f Posted by chop Devlin and Ming-Wei Chang,
d . Research Scientists, Google Al Language One of the ..
| == & ai.googleblog.com
6:36 PM - Nov 2, 2018 )

D 875 Q7 & Copylink to Tweet
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Why Transfer learning?

> The biggest problem is that models like BERT can only be done in a single
job

> Future work requires a new set of data points
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Why Transfer learning?

»>1f you know how to ride a motorbike, then you can learn how to drive a car
»1f you know math and statistics, then you can learn machine learning

»1f you know how to play classical piano, then you can learn how to play jazz
piano
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Transfer learning Or Traditional ML?

> Deep learning algorithms are designed to work in isolation

> Transfer learning is utilizing knowledge acquired for one task to solve related
ones

Knowledge

Transfer

Fuzhen Zhuang, et al. AComprehensive Survey on Transfer Learning
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Negative Transfer learning
> 1f there is little in common between domains, knowledge transfer could be
unsuccessful

> The similarities between domains do not always facilitate learning, because
sometimes the similarities may be misleading

»For example, although Spanish and French have a close relationship with
cach other, but people who learn Spanish may experience difficulties in
learning French.

> Previous experience has a negative effect on learning new tasks is called
negative transfer

’/'
"\L.
. = 4 -
-
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Transfer learning Or Traditional ML?

Traditional ML

Dataset 1 ‘
Dataset 2 -

Learning System
Task 1

Learning System
Task 2

VS

Transfer Learning

Dataset 1 ‘

ﬂ

Learning System
Task 1

\ 4
I

Learning System
Task 2
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Examples of transfer learning

» Transfer learning in Computer-vision (image data) &4

»Some of the models are:
*Oxford VGG Model

*Google Inception Model
*Microsoft ResNet Model
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Examples of transfer learning

» Transfer learning in NLP (text data) ORI ‘\“““\Q\\;“; \
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Examples of transfer learning

» Transfer learning in Audio/Speech
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Why is transfer learning a better choice?

> To learn complex features and train complex model with poor dataset
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Andres Mayer, et al. DeepTox: Toxicity Prediction Using Deep Learning
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How to solve the problem

» Use some pre-trained networks
»Some of the pre-trained models are:
*Alexnet

*VGGI19

*VGG16

*MobileNet

*ResNet

*Word2vec

*Glove and many more...
Reuse Pretrained Network

Load pretrained network Replace final layers Train network Predict and Deploy results
assess network accuracy
Early layers that learned 2

low-level features
{edges, blobs, colors)

Last layers that

learned task

specific features
—~—

B 4 e
Sl {£9 Trining options r' Testimages

ew tolearn
0 Yo 3 5€
MO b ||| S
illion images s ofimages
classes 5 of Classes

Improve network
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When to use transfer learning?
> Lack of data

°The tasks can be different but their domains should be the same

*We are unable to do transfer learning between speech recognition and image
classification tasks since the input datasets are of different types
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When to use transfer learning?
> Speed

»Social Good
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Deep Transfer Learning Strategies

> Direct use of pre-trained models

»Some pre-trained models used directly :
* BERT

*YOLO (You Only Look Once),

* GloVe, UnsupervisedMT
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Deep Transfer Learning Strategies

> Leveraging feature extraction from pre-trained models

*Treat the pre-trained neural network as a feature extractor by discarding the
last fully-connected layer

=~ =, =
LOAD PRETRAINED REPLACE FINAL LAYERS TRAIN NETWORK PREDICT AND ASSESS
NETWORK . o G NETWORK ACCURACY

T — antepensoie | | N I

wr-lovel feciures (dcges,  Inamad Inskapacific ki vpiie b Training Images Treinifig Drtions re—— 1
polghd chinon l e 1l et -::mt.;?‘l_l
i - i - (TR TRAINED NETWORK

| million images, 1000s of classes Fewer classes, learn faster 1005 of images, 10s of classes

. S

v

Imprave network
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Deep Transfer Learning Strategies

> Leveraging feature extraction from pre-trained models
It brings 2 main advantages:
*Allows for specifying the dimensions of the last fully-connected layer

FLATTEN |

7*7*512

21,055

*Allows for using a lightweight linear model (e.g. Linear SVM, Logistic Regression).
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Deep Transfer Learning Strategies
> Fine-tuning last layers of pre-trained models

* Not only training the output classifier but also
fine-tune weights in some layers of the pre-trained model

Muster PPT- Inhalt - Referent - 19
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Deep Transfer Learning Strategies
> Fine-tuning last layers of pre-trained models

* Example:
* Detecting Ferrari Car from Mercedes Car
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Deep Transfer Learning Strategies

»Comparing three strategies
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Confusing between related task

> Transfer learning
»>Domain adaptation
> Multi-task learning
» One-shot learning

> Zero-shot learning
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Confusing between related task

> Transfer learning

* Target domain's feature space is different from the source feature space

»Domain adaptation

*The source and target domain fearture sapce are same but different distribution
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Confusing between related task

»Domain adaptation

® Example:Both target and source have same feature space but with different distribution
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Zhengming Ding, et al., Semi-supervised Deep Domain Adaptation via Coupled Neural Networks, 2018.

X¢
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Confusing between related task

»Domain adaptation

® Example:Both target and source have same feature space but with different distribution

Zhangjie Cao, et al., Partial Adversarial Domain Adaptation, 2018.
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Confusing between related task

> Domain adaptation
® Two domains D* and D" are with different distribution if P * (X*) !=P*(X") (x is the feature space,
P(X) is the marginal probability distribution)

*We have domain adaptation when y*=yx"'and P* (X*) !=P*(X")
*Transfer learning: y® ="

Source domain Domain adaptation

Domain shift

Un-adapted _—~

classifier

o

Online /
measurements R —— L
Misclassifications g ' Adapted classifier
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Confusing between related task

> Multi-task learning

*Transfer Learning only aims at achieving high performance in the target task by

transferring knowledge from the source task, while Multi-task Learning tries to learn the

target and the source task simultaneously.

Training Testing

Transfer learning - -
Multi-task learning - - - -
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Confusing between related task

> Multi-task learning

Multi-task

Sequential

learning transfer learning
sr_:h Iy . 1y Iy 7. I 1y 7. Iy Iy
1 I f I N { I “t I
L — R — L — Y —
—— _——
{ 1 ! I

Tasks are learned

at the same time
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Confusing between related task

» One-shot learning

® one-shot learning aims to learn information about object categories from one,

or only a few, training samples/images

One shot

learning Same
One shot ,
learning — Different

Shivaank Agarwal, et al., Application of Computer Vision Techniques for Segregation of PlasticWaste based on Resin Identification Code.
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Confusing between related task

»Zero-shot learning

® Zero-shot learning is another extreme variant of transfer learning, which relies on no labeled

examples to learn a task.

*Can you classify an object without ever seeing it?

Shivaank Agarwal, et al., Application of Computer Vision Techniques for Segregation of PlasticWaste based on Resin Identification Code.
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Question?
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Implement a simple transfer learning algorithm

> Choose the best pre-tranied model

# synset

. " . "
° FlrSt s e e th e d at as et : High level category (00 o) Avg # images per synset  Total # images
amphibian 94 591 56K
animal 3822 732 2799K
° appliance 51 1164 59K
Image-Net dataset :
946 819 774K
2385 675 1610K
262 69 181K
566 494 280K
462 735 330K
1495 670 1001K
309 607 188K
303 453 137K
187 1043 195K
n 151 838 127K
728 573 417K
1138 821 934K
157 891 140K
1666 600 999K
268 707 190K
166 1207 200K
1239 763 946K
316 551 174K]
tree 993 568 564K
utensil 86 912 78K
vegetable 176 764 135K
vehicle 481 778 374K
person 2035 468 952K

*VGGFace?2 dataset:

*Number Of Images= 3.3 million
*Number Of subjects=9,131
*VGGFace dataset:

Number Of Images= 2.6 million
Number Of subjects=2,622
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Implement a simple transfer learning algorithm

> Choose the best pre-tranied model Available models

.F' d h d lo Model Size Top-1 Accurac Top-5 Accurac Parameters | Depth

ind the model: p Accuracy [ Top 3 Accuracy :
Xception 88 MB 0.790 0.945| 22,910,480 126

ohtt //k i / / I t / VGG16 528 MB 0.713 0.901| 138,357,544 23

ps://keras.io/api/applications

VGG19 549 MB 0.713 0.900| 143,667,240 26
ResNet50 98 MB 0.749 0.921| 25,636,712 -
ResNet1071 171 MB 0.764 0.928| 44,707,176 -
ResNet152 232 MB 0.766 0.931| 60,419,944 -
ResNets0v2 98 MB 0.760 0.930| 25,613,800 -
ResNet101v2 171 MB 0.772 0.938| 44,675,560 -
ResNet152v2 232 MB 0.780 0.942| 60,380,648 -
Inceptionva 92 MB 0.779 0.937| 23,851,784 159
InceptionResNetv2 | 215 MB 0.803 0.953| 55873.736 572
MobileNet 16 MB 0.704 0.895 4,253,864 88
MobileNetvz 14 MB 0.713 0.901 3,538,984 88
DenseNet121 33 MB 0.750 0.923 8,062,504 121
DenseNet169 57 MB 0.762 0.932| 14,307,880 169
DenseNet201 80 MB 0.773 0936 20,242,984| 201
NASNetMobile 23 MB 0.744 0.919 5,326,716 -
NASNetLarge 343 MB 0.825 0.960| 88,949,818 -
EfficientNetBO 29 MB - - 5,330,571 -
EfficientNetB1 31 MB - - 7,856,239 -
EfficientNetB2 36 MB - - 9,177,569 -
EfficientNetB3 48 MB - - 12,320,535 -
EfficientNetB4 75 MB - -l 19,466,823 -
EfficientNetBS 118 MB - -l 30,562,527 -
EfficientNetB6 166 MB - -l 43,265,143 -
EfficientNetB7 256 MB - -| 66,658,687 -
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Implement a simple transfer learning algorithm

> Face recognition using transfer learning
*Select VGGFace or VGGFace 2 model

*The VGGFace model, named later, was described by Omkar Parkhi in the 2015 paper
titled “Deep Face Recognition.”

*The VGGFace2 model,was described by Qiong Cao,in the 2017 paper “VGGFace2: A
dataset for recognizing faces across pose and age.”
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Implement a simple transfer learning algorithm

> Face recognition using transfer learning
*VGGFace Models:

vvggface = VGGFace(model='vggl16')
vvggtace = VGGFace(model="resnet50")
vvggface = VGGFace(model='senet50")

*Perhaps the best-of-breed third-party library for using the VGGFace2 (and

VGGFace) models in Keras is the keras-vggface project and library by Refik
Can Malli
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Implement a simple transfer learning algorithm

»>How to Detect Faces for Face Recognition?

*Use the Multi-Task Cascaded Convolutional Neural Network, or MTCNN, for face detection

*This is a state-of-the-art deep learning model for face detection, described in the 2016 paper titled
“Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks.”
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Implement a simple transfer learning algorithm

> Transfer-Learning

*Allow the CNN network parameters to be transferred from a large datasets to
small one

*Starting point to learn a new task

*Transfer learned features to a new task using a smaller number of training
images
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Implement a simple transfer learning algorithm

@Reuse Pretrained Netwo*
’ @
Load pretrained network Replace ﬁnalﬁars Train network ® Predict and Deploy results
assess network accuracy
e
~ Training images "
Early layers lhatl&ned Last ayers that New layers to earn :
low-level features learned task features specific “Trairmg options Test images
(ecges,blobs, color) specific features to your data set

TN

1 million images Fewer classes 100s ofimages
1000s classes Learn faster 10s of classes

Improve network
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How to determine number of Layers in fully-connected layer?

-why we would want to have multiple layers?

*A single-layer neural network can only be used to represent linearly separable functions.

*[f your problem is relatively simple, perhaps a single layer network would be sufficient.
*A Multilayer Perceptron can be used to represent convex regions.

*They can learn to draw shapes around examples in some high-dimensional space

* that can separate and classify them.
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How do we choose a learning rate?

> A naive approach is to try a few different values and see which one gives you the best
loss without sacrificing speed of training.

*We might start with a large value like 0.1, then try exponentially lower values: 0.01,
0.001, etc.

*What happens if the learning rate is too high?

A learning rate that is too large can cause the model to converge too quickly to a suboptimal
solution,whereas a learning rate that is too small can cause the process to get stuck.
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Implement a simple transfer learning algorithm

> Face recognition using transfer learning
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Implement a simple transfer learning algorithm

> Face recognition using transfer learning

*Retrain the last fully-connected layers

conv-1 conv-2 conv-3 conv-4 conv-5  fc-6- fe-7- fc-8-
4096 4096 Class
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Question?
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A New article

»DT-LET: Deep Transfer Learning by Exploring where to Transfer

*How to transfer knowledge ?

v'the number of source and target domain should be same

*The problem appears when the data from the two domains are heterogeneous
with different resolutions

*Solution:“where to transfer” proposed
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A New article

»DT-LET: Deep Transfer Learning by Exploring where to Transfer
* The number of layers for two domains does not need to be the same

*Optimal matching of layers will be found
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A New article

»DT-LET: Deep Transfer Learning by Exploring where to Transfer

Target Domain

Data Ik

(OO 00)€>
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v e ¥

reshape
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| Source Domain H Target Domain
! Co-occurence Data Cs ) Co-occurenceData Ct
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